Bending light via adiabatic optical transition in longitudinally modulated photonic lattices
نویسندگان
چکیده
Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands.
منابع مشابه
Light propagation and localization in modulated photonic lattices and waveguides
We review both theoretical and experimental advances in the recently emerged field of modulated photonic lattices. These artificial periodic dielectric structures provide a powerful tool for the control of the fundamental aspects of light propagation. Photonic lattices are arrays of coupled optical waveguides, where the light propagation becomes effectively discretized. The discretized nature o...
متن کاملRobust light transport in non-Hermitian photonic lattices
Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect an...
متن کاملMulticolor Talbot effect and control of polychromatic light patterns in modulated photonic lattices
We analyze propagation of polychromatic light patterns in modulated photonic lattices created with arrays of periodically curved coupled optical waveguides. We demonstrate that in waveguide arrays with specially designed modulation periodic recurrences of input light patterns produced by white-light and supercontinuum sources can be realized, e.g., through multicolor Talbot effect. © 2008 Elsev...
متن کاملDiffraction control in periodically curved two-dimensional waveguide arrays.
We study propagation of light beams in two-dimensional photonic lattices created by periodically curved waveguide arrays. We demonstrate that by designing the waveguide bending, one can control not only the strength and sign of the beam diffraction, but also to engineer the effective geometry and even dimensionality of the two-dimensional photonic lattice. We reveal that diffraction of differen...
متن کاملShaping and control of polychromatic light in nonlinear photonic lattices.
Focus Serial: Frontiers of Nonlinear Optics We overview our recent results on spatio-spectral control, diffraction management, broadband switching, and self-trapping of polychromatic light in periodic photonic lattices in the form of rainbow gap solitons, polychromatic surface waves, and multigap color breathers. We show that an i...
متن کامل